Exercise 49

Which of the following functions f has a removable discontinuity at a ? If the discontinuity is removable, find a function g that agrees with f for $x \neq a$ and is continuous at a.
(a) $f(x)=\frac{x^{4}-1}{x-1}, \quad a=1$
(b) $f(x)=\frac{x^{3}-x^{2}-2 x}{x-2}, \quad a=2$
(c) $f(x)=\llbracket \sin x \rrbracket, \quad a=\pi$

Solution

Part (a)

$$
f(x)=\frac{x^{4}-1}{x-1}, \quad a=1
$$

The factor of $x-1$ in the denominator would cause a vertical asymptote to appear in the graph at $x=1$, but since one of the factors in the numerator cancels out with it, there's only a hole at $x=1$.

$$
f(x)=\frac{\left(x^{2}+1\right)\left(x^{2}-1\right)}{x-1}=\frac{\left(x^{2}+1\right)(x+1)(x-1)}{x-1}=\left(x^{2}+1\right)(x+1)
$$

To remove the hole, figure out what $f(x)$ would be at $x=1$.

$$
\left(1^{2}+1\right)(1+1)=(2)(2)=4
$$

Then define a new function with this value at $x=1$.

$$
g(x)= \begin{cases}\frac{x^{4}-1}{x-1} & \text { if } x \neq 1 \\ 4 & \text { if } x=1\end{cases}
$$

The graph of $g(x)$ versus x is continuous.

Part (b)

$$
f(x)=\frac{x^{3}-x^{2}-2 x}{x-2}, \quad a=2
$$

The factor of $x-2$ in the denominator would cause a vertical asymptote to appear in the graph at $x=2$, but since one of the factors in the numerator cancels out with it, there's only a hole at $x=2$.

$$
f(x)=\frac{x\left(x^{2}-x-2\right)}{x-2}=\frac{x(x+1)(x-2)}{x-2}=x(x+1)
$$

To remove the hole, figure out what $f(x)$ would be at $x=2$.

$$
2(2+1)=(2)(3)=6
$$

Then define a new function with this value at $x=2$.

$$
g(x)= \begin{cases}\frac{x^{3}-x^{2}-2 x}{x-2} & \text { if } x \neq 2 \\ 6 & \text { if } x=2\end{cases}
$$

The graph of $g(x)$ versus x is continuous.

Part (c)

$$
f(x)=\llbracket \sin x \rrbracket, \quad a=\pi
$$

Below is a graph of this function versus x.

As the graph shows, there are removable discontinuities at $x=\pi / 2+2 n \pi$, where $n=0, \pm 1, \pm 2, \ldots$ At $x=\pi$, however, there's a jump discontinuity.

